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* We want the prediction both accurate and
interpretable. It should use the untapped
unlabeled dataset and leverage the DDI
mechanism.
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« Random initialization does not affect our prediction! CASTER achieves 0.7673 average correlation score
across five models with different random seeds. Also, we find all nitrate-based drugs and CASTER
assigns on average 50% higher coefficient to nitrate than the mean of coefficients of other sub-
structures existed in the input pair, which is not a coincidence.
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